skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sternberg, Paul W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lee, Siu (Ed.)
    Abstract The lysosome-related organelles (“gut granules”) in the intestinal cells of many nematodes, including Caenorhabditis elegans, play an important role in metabolic and signaling processes, but they have not been fully characterized. We report here a previously undescribed phenomenon in which the autofluorescence of these granules displays a “flash” phenomenon in which fluorescence decreases are preceded by sharp increases in fluorescence intensity that expand into the surrounding area when the granules are stimulated with blue light. Autofluorescent granules are present in the intestinal cells of all six nematode species examined, with differences in morphology and distribution pattern. Five species exhibit the flash phenomenon: Panagrellus redivivus (Clade IV), Steinernema hermaphroditum (Clade IV), C. elegans (Clade V), Oscheius tipulae (Clade V), and Pristionchus pacificus (Clade V). The reaction of the granules to blue light stimulation greatly differs among different developmental stages and may also be dependent on physiological conditions. In addition, even within the same animal, the sensitivity of individual granules differs, with some of the variation associated with other characteristics of the granules, such as their overall location within the intestine. We hypothesize that the differences in response to blue light indicate the existence of different sub-populations of gut granules in nematode intestines, and the visually spectacular dynamic fluorescence phenomenon we describe might provide a handle on their eventual characterization. 
    more » « less
    Free, publicly-accessible full text available September 4, 2026
  2. Reinke, Valerie (Ed.)
    Abstract As an entomopathogenic nematode (EPN), Steinernema hermaphroditum parasitizes insect hosts and harbors symbiotic Xenorhabdus griffinae bacteria. In contrast to other Steinernematids, S. hermaphroditum has hermaphroditic genetics, offering the experimental scope found in Caenorhabditis elegans. To enable study of S. hermaphroditum, we have assembled and analyzed its reference genome. This genome assembly has five chromosomal scaffolds and 83 unassigned scaffolds totaling 90.7 Mb, with 19,426 protein-coding genes having a BUSCO completeness of 88.0%. Its autosomes show higher densities of strongly conserved genes in their centers, as in C. elegans, but repetitive elements are evenly distributed along all chromosomes, rather than with higher arm densities as in C. elegans. Either when comparing protein motif frequencies between nematode species or when analyzing gene family expansions during nematode evolution, we observed two categories of genes preferentially associated with the origin of Steinernema or S. hermaphroditum: orthologs of venom genes in S. carpocapsae or S. feltiae; and some types of chemosensory G protein-coupled receptors, despite the tendency of parasitic nematodes to have reduced numbers of chemosensory genes. Three-quarters of venom orthologs occurred in gene clusters, with the larger clusters comprising functionally diverse gene groups rather than paralogous repeats of a single venom gene. While assembling S. hermaphroditum, we coassembled bacterial genomes, finding sequence data for not only the known symbiont, X. griffinae, but also for eight other bacterial genera. All eight genera have previously been observed to be associated with Steinernema species or the EPN Heterorhabditis, and may constitute a second bacterial circle of EPNs. 
    more » « less
    Free, publicly-accessible full text available August 27, 2026
  3. Entomopathogenic nematodes (EPN) infect and kill their insect host with the help of symbiotic bacteria. The only known hermaphroditic (androdiecious) EPN, the clade IV Steinernema hermaphroditum, offers opportunities for exploring both parasitic and mutualistic symbiosis, as well as for evolutionary and developmental studies. Experimental and genetic analysis of this animal is now facilitated through the development of forward and reverse genetic tools and improved culturing techniques. Here, we describe a liquid-culture technique adapted for this worm. The method can be a starting point for the development of large-scale cultivation of the worm and provides a method to generate infective juveniles without an insect host and either with or without its native symbiotic bacteria. 
    more » « less
  4. As an entomopathogenic nematode (EPN), Steinernema hermaphroditum parasitizes insect hosts and harbors symbiotic Xenorhabdus griffinae bacteria. In contrast to other Steinernematids, S. hermaphroditum has hermaphroditic genetics, offering the experimental scope found in Caenorhabditis elegans. To enable biological analysis of S. hermaphroditum, we have assembled and analyzed its reference genome. This genome assembly has five chromosomal scaffolds and 83 unassigned scaffolds totaling 90.7 Mb, with 19,426 protein-coding genes having a BUSCO completeness of 88.0%. Its autosomes show higher densities of strongly conserved genes in their centers, as in C. elegans, but repetitive elements are evenly distributed along all chromosomes, rather than with higher arm densities as in C. elegans. Either when comparing protein motif frequencies between nematode species or when analyzing gene family expansions during nematode evolution, we observed two categories of genes preferentially associated with the origin of Steinernema or S. hermaphroditum: orthologs of venom genes in S. carpocapsae or S. feltiae; and some types of chemosensory G protein-coupled receptors, despite the tendency of parasitic nematodes to have reduced numbers of chemosensory genes. Three-quarters of venom orthologs occurred in gene clusters, with the larger clusters comprising functionally diverse pathogenicity islands rather than paralogous repeats of a single venom gene. While assembling the genome of S. hermaphroditum, we coassembled bacterial genomes, finding sequence data for not only the known symbiont, X. griffinae, but also for eight other bacterial genera. All eight genera have previously been observed to be associated with Steinernema species or the EPN Heterorhabditis, and may constitute a “second bacterial circle” of EPNs. The genome assemblies of S. hermaphroditum and its associated bacteria will enable use of these organisms as a model system for both entomopathogenicity and symbiosis. 
    more » « less
  5. Steinernema hermaphroditum is the only identified entomopathogenic nematode that is consistently hermaphroditic and thus offers a great opportunity to use genetic approaches to probe symbiosis. Evolutionarily, ecologically, and morphologically distinct from laboratory nematodes commonly used in the laboratory, with both forward and reverse genetics tools available, this species also provides an opportunity to explore other areas of biology, especially using comparative studies. Here, we describe an improved solid medium-based culturing method for S. hermaphroditum that we found particularly helpful for phenotypic analysis and genetic manipulation. We document the rapid increase in the size of the worm; and show that the uniform growth of the worm on this medium provides a good basis for developmental studies. Finally, we measure the brood size of individual animals, which, although far larger, has a very similar trajectory to that of the hermaphroditic Caenorhabditis elegans, suggesting common reproductive restraints. 
    more » « less
  6. Bacteria can swim upstream in a narrow tube and pose a clinical threat of urinary tract infection to patients implanted with catheters. Coatings and structured surfaces have been proposed to repel bacteria, but no such approach thoroughly addresses the contamination problem in catheters. Here, on the basis of the physical mechanism of upstream swimming, we propose a novel geometric design, optimized by an artificial intelligence model. UsingEscherichia coli, we demonstrate the anti-infection mechanism in microfluidic experiments and evaluate the effectiveness of the design in three-dimensionally printed prototype catheters under clinical flow rates. Our catheter design shows that one to two orders of magnitude improved suppression of bacterial contamination at the upstream end, potentially prolonging the in-dwelling time for catheter use and reducing the overall risk of catheter-associated urinary tract infection. 
    more » « less
  7. Abstract The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO—a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations—evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)—mechanistic models of molecular “pathways” (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project. 
    more » « less
  8. Wood, V (Ed.)
    Abstract The Alliance of Genome Resources (the Alliance) is a combined effort of 7 knowledgebase projects: Saccharomyces Genome Database, WormBase, FlyBase, Mouse Genome Database, the Zebrafish Information Network, Rat Genome Database, and the Gene Ontology Resource. The Alliance seeks to provide several benefits: better service to the various communities served by these projects; a harmonized view of data for all biomedical researchers, bioinformaticians, clinicians, and students; and a more sustainable infrastructure. The Alliance has harmonized cross-organism data to provide useful comparative views of gene function, gene expression, and human disease relevance. The basis of the comparative views is shared calls of orthology relationships and the use of common ontologies. The key types of data are alleles and variants, gene function based on gene ontology annotations, phenotypes, association to human disease, gene expression, protein–protein and genetic interactions, and participation in pathways. The information is presented on uniform gene pages that allow facile summarization of information about each gene in each of the 7 organisms covered (budding yeast, roundworm Caenorhabditis elegans, fruit fly, house mouse, zebrafish, brown rat, and human). The harmonized knowledge is freely available on the alliancegenome.org portal, as downloadable files, and by APIs. We expect other existing and emerging knowledge bases to join in the effort to provide the union of useful data and features that each knowledge base currently provides. 
    more » « less
  9. null (Ed.)
    Abstract The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations. 
    more » « less